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Design and Implementation of a Resource
Manager in a Distributed Database System

Norman Bobroff1 and Lily Mummert1,2

This paper describes a system called Trends for managing IT resources in a production
server environment. The objective of Trends is to reduce operational costs associated
with unplanned outages, unbalanced utilization of resources, and inconsistent service
delivery. The Trends resource manager balances utilization of multiple resources such
as processor and disk space, manages growth to extend resource lifetimes, and factors
in variability to improve temporal stability of balancing solutions. The methodology
applies to systems in which workload has a strong affinity to databases, files, or ap-
plications that can be selectively placed on one or more nodes in a distributed system.
Studies in a production environment demonstrate that balancing solutions remain stable
for as long as the 9–12 months covered by our data. This work takes place in the context
of the Lotus Notes distributed database system, and is based on analysis and data from
a production server farm hosting over 20,000 databases.

KEY WORDS: Resource management; load balancing; autonomic management;
capacity planning.

1. INTRODUCTION

In large-scale server installations, operational and maintenance costs dominate
equipment costs. A significant source of cost is attributed to unanticipated prob-
lems such as poor client response time, server overload, or exhaustion of server
resources such as disk space. These problems require attention from administrative
personnel, increasing operational costs. They often occur during peak operating
periods, as opposed to scheduled maintenance windows during which interven-
tion would be less intrusive. Thus reducing the risk of such problems, and the
consequent need for human intervention, is an important part of reducing the cost
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Fig. 1. Primary components of the autonomic manager.

of managing a large server installation. In this paper, we describe an autonomic
management system called Trends to address these problems. Figure 1 shows a
logical overview of Trends. It consists of three key components.

1. Resource monitor—Gathers capacity and utilization information from the
managed system elements, typically servers, applications, network, and
storage devices. This component retains historical records of this data to
determine trends in the rates of resource utilization. In our implementation
this component is distributed, an instance on each server.

2. Resource manager—Generates a plan for how to redistribute workload
according to the objectives and methodology appropriate to the system.
The resource manager applies administrative constraints to the plan. For
example, it may be specified a priori that certain applications or databases
be grouped together, possibly on specific servers. It also considers trade-
offs between accuracy of the plan and cost to implement the plan. This
component operates centrally, one instance on each workstation of an
active administrator. It retrieves data from the resource monitors.

3. Change manager—Accepts the plan submitted by the resource manager.
The change manager validates the plan (e.g. checks that all servers are
available, whether the entire plan can complete off-shift or requires stag-
ing, etc), generates a workflow for verification and approval by human



www.manaraa.com

Design and Implementation of a Resource Manager 153

administrators, and automatically implements the plan. The change man-
ager resides on one of the servers in the management domain.

The primary subject of this paper is the methodology and implementation of
the Resource Manager. The methodology is used to correct resource overloads and
prevent outages caused by resource exhaustion (e.g. running out of disk space). It
has the following distinguishing characteristics.

� Manages multiple resources. An integrated approach to managing multiple
resource dimensions is essential. One system may be underutilized in
CPU but running out of disk space, whereas another system is processor
constrained. The Resource Manager must generate a plan to redistribute
workload among servers to make effective use of both resources on both
machines.

� Extends resource lifetimes. Extending the lifetime of the solution is an
improvement over point-in-time methodology. Consider a system as it
evolves from a condition of satisfactory performance or balanced resource
utilization. After some period the system exceeds a threshold, which trig-
gers implementation of a resource balancing plan. When the cost of imple-
menting the resource rebalance plan is low, monitoring and redistribution
of workload can occur frequently. (The network dispatcher commonly
used in busy web sites to route HTTP requests based on metrics obtained
from the backend servers is an example of low cost rebalancing.) How-
ever, significant management cost, downtime, or user impact associated
with rebalancing demands a methodology that extends the lifetime of the
solution. Furthermore, extending the solution lifetime facilitates planning
for new resources. Consider a group of servers having the equal quanti-
ties of free disk space at a point in time. Applications on each server are
consuming free disk space at different rates so that servers will be running
out of space at many different times. Management costs are reduced if
the resource balance plan places applications so that the lifetime of each
server is predictable. This approach is especially attractive in a corporate
environment where the lifetimes can mesh with the planning cycles for
purchases of resources such as storage and CPU. Thus the methodology
should incorporate lifetime forecasting based on the resource capacity and
observed rate of consumption.

� Manages variability. It is desirable to minimize and uniformly distribute
short-term variability in resource consumption where possible. Consider
two servers with equal daily average processor utilization of 80%. One
machine has variability of 10%, the other 20%. The server with lower
variability provides more consistent response times and can function at a
higher average utilization.
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The methodology developed here applies to systems in which workload
has a strong affinity to databases, files, or applications that can be selectively
placed on one or more server nodes in a distributed system. We demonstrate
that balancing workload distributions over multiple resources results in stable
and predictable resource utilization. A case study in a production environment of
Lotus Notes mail servers shows that workload distributions balanced over multiple
resources can remain stable for many months. Lotus Notes a distributed database
system used extensively in large and medium sized commercial enterprises. The
methodology is productized in the server performance component of the Lotus
Domino Administrator in version 6.0.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the operation of the Notes database system. Section 3 characterizes the
workload and describes our approach to multi-dimensional workload balancing.
Section 4 describes aspects of the product implementation of the resource monitor
and change manager and expands on the autonomic approach. It also describes
administrative and planning tasks that can be provided by a well architected re-
source manager. These functions provide considerable value beyond the central
design point of correcting resource utilization and distribution problems arising
from temporally evolving usage patterns. Section 5 shows the results of applying
our methodology to a production environment. Section 6 reviews work on other
systems related to the resource management problems confronted in the Lotus
Notes environment. Conclusions follow in Section 7.

2. BACKGROUND ON LOTUS DOMINO

The paper emphasizes as much as possible the general aspects of this work.
Because the work is implemented in the Lotus Domino application environment
we provide a brief background on its architecture, especially features germane to
autonomic resource management. Section 2.1 and 2.2 describe the basic architec-
ture and resource balancing options of the Notes environment.

2.1. Domino Server and Database Architecture

Lotus Notes is middleware for messaging and collaborative applications
used in a client-server environment [1, 2]. The primary elements are the server
component (referred to as Domino) that hosts application databases, and the
Lotus Notes client. In a typical Notes application the code and data are bound
together within the application database and stored as database elements. This
feature facilitates replication, distribution, and synchronization of both data and
code. A key element of Notes is the ability to replicate via a peer-to-peer model
with weak data consistency [3]. Replication merges divergent database replicas
and flags conflicting updates that must be resolved manually. The degree of data
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consistency and frequency of updates between replicas is application specific.
Replicas of heavily accessed databases are often placed on multiple servers or
clients. Replication makes Notes well tailored for low bandwidth, intermittently
connected networks or mobile users, and “edge-of-network” servers such as branch
offices.

Remote access to server database applications occurs over TCP networks via
several protocols. The Notes client uses proprietary remote procedure calls (RPC)
and is the preferred method of access. Alternative access is supported for open
protocols such as SMTP and POP3 (for mail), although these typically compromise
performance and functionality. A significant feature of the Notes client is that it
includes the subset of the Domino server code that provides access to application
databases. Applications that have been fully replicated to the client can execute
when the client is disconnected. This enhances application availability in weakly
connected networks. It may also improve performance for connected clients by
reducing network latency.

Figure 2 shows a Notes installation with M servers accessed from N clients.
Application database “B” is replicated across servers to increase availability and
distribute load. Clients create local replicas of key databases to improve perfor-
mance or work disconnected or with intermittently connected networks.

2.2. Domino Server Resource Balancing Mechanisms and Timeframes

A key aspect of the Notes architecture is the affinity of resource consumption
to the database applications. To excellent approximation, the processor utilization,
disk space, and network bandwidth used by a Domino server is the sum of the

Fig. 2. Overview of notes replicated database architecture.
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Fig. 3. The load-balancing problem in the time domain.

contributions from the individual database applications on that server. Reloca-
tion of an application database from one server to another moves the resource
consumption to its destination. Creation of a new replica causes processor and
network load to move to the new server in proportion to the fraction of clients
(users) that choose to go to the new replica. Thus, moving databases and directing
clients are the primary mechanisms of resource reallocation.

It is useful to consider workload imbalance and remedies at different times-
cales. Figure 3 shows the remedies available to Domino in the time domain.
Databases are categorized on the vertical axis according to degree of sharing,
single (e.g. e-mail database) or multi-user applications (e.g. collaboration, depart-
ment financial planning). On a long timescale, databases and replicas are placed
to uniformly distribute resource consumption. This is the focus of the resource
manager in this paper and is especially relevant to single user applications such
as email. For short-term balancing, clients can be dynamically redirected to an
application replica on a less loaded server. The client maintains an affinity to that
replica until the server times its session out. Multi-client applications are often
hosted in a server cluster. Client requests to an overloaded server are automatically
redirected to another cluster member.

3. RESOURCE MANAGEMENT STRATEGY

The introduction noted that an ideal resource manager balances utilization of
one or more resources across servers, the growth or equivalently projected lifetime
of the resource, and the variability of resource utilization. This section explains
how the concurrent requirements of balancing average resource utilization and
variability leads to the concept of equalizing workload profiles across servers.
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Equalizing workload profiles also proves beneficial in extending the lifetime and
stability of the resource balancing plan as shown in the results of Section 5.
Management of variability is also important in achieving efficient utilization of
resources.

Section 3.1 characterizes database (user) activity in the Domino server mail
environment. Section 3.2 extends the workload characterization to motivate the
methodology of balancing workload profiles across servers. Balancing workload
distributions is contrasted to “greedy” rebalancing schemes typically used by
administrators to reduce overload.

3.1. Characterizing Daily Activity and Variability

Data from a set of 24,000 mail databases is presented with the focus on
activity (processor intensive load). This section establishes the linear relation
between activity and standard deviation used in the conceptual analysis. Activity
is used as the illustrative resource here, but many other metrics are available for
resource balancing as described in Section 4.

Data are collected from production Domino release 5 servers running on IBM
RS/6000 SP systems with AIX. The servers are dedicated to mail databases ac-
cessed from Notes clients. Mail databases in our environment are large and highly
active, and mail servers tend to be the most problematic to manage. In Notes, a
semantic operation against a database by a Notes client consists of a sequence of
RPCs, or transactions. Instrumentation on the server logs the type, duration, and
I/O activity for each transaction against each database. Operating system instru-
mentation (such as “vmstat” on AIX) is used to obtain global statistics such as
CPU utilization. There is no mechanism in the server code for fine-grained CPU
utilization to be accumulated for each transaction against each database. However,
it is established that the aggregated transaction count is strongly correlated to sys-
tem CPU utilization [4]. This correlation applies to the uniform distribution of the
types of RPCs within the mail application used in this work. In practice, this is not
a restrictive assumption because application deployments in commercial environ-
ments avoid mixing application types on the same server. In contrast, the hardware
and operating system platforms are heterogeneous. Thus transaction count (also
referred to here as activity) is used as a proxy for processor load against each
database. All data reported in this paper is collected by post processing Domino
server logs on a daily basis. When transactions consume multiple resources they
are filtered to more equally compare durations. For example, the duration of a
data read transaction depends on both CPU and I/O activity. So response time
comparisons within read transactions are made for similar size data transfers.

Figure 4 shows the distribution of mean daily database activity for mail
databases on 22 production servers. The servers hosted a total of 24,440 databases
occupying 2.51 TB of disk space. We omitted databases created on the server after
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Fig. 4. Distribution of mail databases in mean daily activity.

the start of the data collection period so the figure reflects a population of 21,367
databases. The horizontal axis is the mean activity, while the vertical axis is the
number of databases having that mean or greater. For reference, an exponential
distribution having the mean of the data is also shown. The actual distribution is
very slightly weighted toward high activity compared to the exponential with no
free parameters.

The variability in database daily activity is shown in the scatter plot of Fig. 5.
Each point on the plot corresponds to a single mail database located by the mean
and standard deviation of the daily activity against that database. Databases exhibit
variable load because of the stochastic nature of aggregate client accesses, and
because of time-dependent accesses from individual clients. The data suggest a
power law relates the standard deviation σ of each database to the mean daily
activity. In fact, the best-fit slope and normalization of the data are unity so that
the standard deviation is equal to the daily activity. This result suggests that the
daily activity against each database might be exponentially distributed. However,
an examination of individual database access patterns shows that the distribution
of daily activity against each individual database is rarely exponential or any
other commonly recognizable statistical form. This latter observation indicates
broadly varying work patterns of each database’s users. However, when data is
aggregating from multiple database (about 10 is sufficient), the average usage
pattern approaches exponential. Because the number of databases on each server
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Fig. 5. Daily mean and standard deviation of activity.

ranges from a few hundred to many thousand, server fluctuations in total daily
transactions are exponentially distributed in accord with Fig. 5.

A consequence of the linear relation between mean and standard deviation
is that a server with an excess of high activity databases has a higher inter-day
variability than a server with the same mean but an excess of low activity databases.
In this case, managing variability is a distinct goal from managing load.

3.2. Managing Workload Distributions and Variability

The objective is to distribute the database applications across a heterogeneous
set of server nodes so that resource loading and variability are distributed uniformly
and in proportion to capacity of each server. This result is achieved when the form
of the distribution of workload on each server is that of the aggregate of all
workload. This solution is independent of the actual distribution, it happens to be
exponential for the activity workload of Fig. 4. This conclusion is largely intuitive,
but we provide a simple example.

Consider N databases to be placed on two servers with such that the servers
have equal mean activity and coefficients of variation (COV). Suppose, as for
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exponential distribution, that the standard deviation of activity for each database
is equal to the mean. The N total databases consist of two subsets with expo-
nentially distributed mean daily activity; N1 databases with mean activity A1,
and N2 databases with mean activity A2. The total daily activity within each
set is N1A1 = N2A2. Because variances of independent variables add, the vari-
ances for each set are N1A

2
1 and N2A

2
2, respectively. The COV Vi is given by

V 2
i = NiA

2
i /(NiAi)2 = 1/Ni . If each subset is placed on a separate server, the av-

erage load is balanced but the variability is not. On the other hand, equally dividing
the subsets among servers to achieve equal workload distributions balances both
load and variability. We also emphasize that our approach is to simultaneously
balance distributions in multiple workload dimensions.

Figure 6 summarizes this aspect of the resource management methodology.
Figure 6a shows two servers in a two dimensional slice of resource space, in
this case database activity and free disk space. A target is set for each server by
apportioning the total amount of resource according to the processor and disk
space capacity of each server. The targets are indicated by the solid lines. The
figure shows the pre-balanced location of two servers in the plane of activity and
disk space. The goal is to bring the servers to within a specified tolerance of the
target T by redistributing the databases. The databases are to be moved so that
the condition of equal resource profiles is met, as illustrated in (b). The broken
lines indicate the initial distributions of the databases on servers 1 and 2. After
balancing, they should have the common distribution indicated by the solid line.
An additional goal is to balance the growth rate in resource consumption so as
to uniformly distribute the lifetime of each server. Implementation is described in
Section 4.

Fig. 6. Balancing total load and disk space (a) while equalizing the database distribution (b).
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Prior to introduction of the uniform workload distribution methodology, ad-
ministrators of large installations typically applied a “greedy” heuristic to balanc-
ing servers. When a server runs out of a resource, the most resource intensive ap-
plications on that server are moved to the least loaded server. From an algorithmic
point of view this is the solution with the fewest moves. However, a consequence
is that servers that were lightly loaded become populated with the most active,
variable, and growing application workloads. The resource lifetimes of the servers
becomes unbalanced, some fail or require rebalancing on a timescale of weeks,
whereas others are stable for months. A key benefit of the management strategy
presented here is that it provides uniform and predictable resource lifetimes across
all servers. This allows capacity upgrades to be planned and increases server
availability. Quantitative results from the production environment are presented in
Section 5.

4. IMPLEMENTATION

The system consists of three primary interacting software components as
described in the Introduction and Fig. 1. These are the resource monitor, resource
manager, and change manager. The main functions provided by each component,
and their interactions are described in Section 4.1. One interesting aspect is the
connection between the resource manager and enterprise capacity planning. This
connection and the synergy between the administrator and the automated functions
are covered in Section 4.2. Section 4.3 describes the rebalancing algorithm used
to implement the methodology discussed in the previous section.

4.1. System Overview

A resource monitor (introduction and Fig. 1) resides on each server. It is
implemented as a Domino database application and collects system and stor-
age configuration, capacity, and individual usage statistics for each application
databases hosted on that Domino server. Over 20 metrics are collected; data com-
monly used for resource balancing includes transactions (activity), disk space,
reads/writes, bytes read/written, Domino proprietary RPCs, and HTTP accesses.
Data are preprocessed at the server and stored in a local database. Preprocess-
ing includes aggregating the statistics into 5 min summaries. Summaries are also
generated for a prime shift and off shift. Additional processing computes the ex-
ponentially weighted average for each statistic and a linear estimate of the growth
rate. The exponential averaging window defaults to 3 weeks. Raw data is retained
for a configurable time period, defaulting to a week, to be used for post-mortem
problem determination. A snapshot of the processed data is taken each week and
retained indefinitely. Parameters that configure the preprocessing (e.g. averaging
times, prime shift hours, holidays, etc.) are set centrally using the administrative
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client. They propagate to the resource monitor on each administered server via
Notes replication.

The resource manager accepts as input many constraints on where to place
applications. An administrator may define groups of application databases that
have attributes such as “keep together,” “don’t move,” “must move,” or “assign
to a specific server.” Another common constraint is to define servers as sources
or sinks of applications. A source (sink) server has the property that applications
can only be removed (added). The output of the resource manager is itself a
Domino database application containing a list of application moves from source
to destination server. The list is passed to the change manager for administrative
approval and automatic implementation.

The resource manager presents a graphical view of the state of current re-
source utilization on each server. The view allows drilldown on each server to
show consumption by application. Data is collected on a per user basis, so further
drilldown allows the administrator to view the most active users. All these views
can be sorted on the resource metric which is extremely useful for rapid problem
determination even in systems of hundreds of servers and thousands of users. The
administrator is provided measures of how far the system presently deviates from
balance (e.g. average and root mean square deviation of the servers from their
target utilizations for each resource.) Additional views show the uniformity of
workload distribution on each server. Examples of these graphical views are pro-
vided in the results Section 5. On the basis of this data, the administrator decides
whether a rebalancing is necessary.

The change manager receives the plan and checks its validity. It ensures the
plan can be implemented automatically by verifying it can contact all servers and
has the correct permissions. The change manager can decide to stage the plan if
there is insufficient time in an allocated maintenance window to fully complete
execution. If the plan meets these tests, the change manager submits requests for
approval to one or more administrators. Upon approval, the plan is automatically
implemented during specified maintenance periods.

4.2. Administrator Interaction

In a fully autonomic solution, policies specified by an administrator (perhaps
combined with self-learned behaviors) are used to close the resource management
loop of Fig. 1. The decision to generate a rebalance plan could be automated
based on policies provided to the resource manager. For example, if processor
load exceeds a threshold T on any server or the overall misbalance in disk volume
lifetime exceeds 30 days, and no disks are to be purchased for 45 days, then
rebalance. In practice, there is always a tradeoff between full automation and direct
administrator assessment and decision making, and it is difficult to fully automate
the loop. In a large-scale production environment, even one that is fairly mature,
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each instance of a resource rebalancing action may have unique requirements. For
example, servers or users may be added and removed, or resources consolidated
or migrated to new equipment. Full automation requires carefully developed and
tested policies which have long-term stability. Because the cost of testing is high,
the penalty for a mistake large, and the business environment is not stationary,
it is cost effective to have human intervention in this task. The majority of cost
savings in the production environment is realized by the automated collection of
data, the stability and predictability of the system resulting from the rebalancing,
and automated implementation of the plan by the change manager. Even in a
fully automated system, a synergistic approach in which human administrators
assist the software elements, particularly in validating plans prior to automatic
implementation, is desirable to build trust in the system.

The resource manager exposes its resource balancing function to the admin-
istrator so that it can be used as a central element of enterprise capacity planning.
This function is serendipitous to the roles usually associated with autonomic man-
agement. Resource balancing is closely related to capacity planning. Resource
balancing distributes applications on existing servers to provide uniform resource
utilization. Capacity planning asks what servers and resources are required to
achieve specified utilization levels on the basis of the present or future demands of
a set of applications. The resource monitors provide current demand and estimate
future requirements through linear fits to the resource utilization data. The resource
manager allows administrators to define a future system configuration by remov-
ing existing servers and adding “new” servers. The distribution of applications on
servers and predicted resource utilization of is presented to the administrator. This
data is used to verify that planned purchases of equipment meet requirements.

4.3. Algorithm

This is an overview of the algorithm used to achieve the multidimensional
resource balancing. More details can be found in [5]. The problem is similar in
formulation to multidimensional bin packing with the additional constraint that
the distribution of items in the bins (servers) be approximately equal. The problem
is NP-hard, so a heuristic algorithm is used based on a greedy approach. The
algorithm directly balances any two resources selected by the administrator from
the approximately twenty available database metrics. The default resources are
prime shift RPCs and disk space. Some correlation is expected between metrics.
For example, a high daily RPC rate tends to correlate with increased network I/O.
Thus, balancing provides benefit to all resources. This behavior is demonstrated in
the results of Section 5.1. The administrator also specifies a desired tolerance for
the balance solution by specifying the root mean square deviation of all servers
from the target in each resource dimension. Decreasing the tolerance increases the
number of moves.
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The output of the algorithm is a list of databases to move from the source
to destination server. This move list meets the objectives of the methodology
described in this paper. We now describe the three primary phases of the
algorithm.

1. Assign targets for the amount and distribution of resource to place on each
server—The total resource used by all applications on all servers is calculated
on the basis of data provided by the resource monitors. A target is set for each
server by distributing the total resource in proportion to the resource capacity of
the server.

Workload distributions are equalized by dividing the server level target into
sub bins. Each sub bin will be populated with applications having similar resource
requirements. To create sub bins, the distribution of resource demand for all
applications on all servers is computed for each of the two selected resources.
(A typical result would be the distribution of RPC workload illustrated in Fig. 4.)
The distributions are used to divide the applications into three bins. The bin
boundaries are computed as the values that include the greatest 30%, middle 40%,
and lower 30% of applications. These bin sizes are configurable parameters. For
two resource dimensions this results in nine bins. Targets are set for each bin on
each server using the bin boundaries computed above. The bin targets are simply
proportional to the load to be placed on the server, bin size, and server capacity.
Section 5 shows examples of the distribution of database applications into bins for
the production environment.

On average, some bins on some servers are over target capacity, while others
are under. Because we want to minimize the number of applications moved, we
don’t remove all the databases and redistribute them. Therefore, once targets are
computed the algorithm enters a remove phase followed by a place phase.

2. Remove phase, compute which databases to remove from servers—In the
remove phase, databases are taken from any of the nine bins that are over target in
either of the two resources on each server. These databases are placed on a global
move list to be reassigned to another server. The remove phase defines temporary
targets for removal that are configurable and below the final targets. This is done
to provide a greater set of databases on the place list to improve the balancing.
The configurable level of the remove phase target provides another way to trade
accuracy against the expense of more moves.

The databases in each bin are sorted in descending order by resource metric.
Because balancing is done on two resources, the sort is done on the resource
furthest from the target. (The most distant resource is continually reevaluated as
the algorithm proceeds.) The algorithm removes databases from this list until the
bin is under target. If the algorithm proceeded in sorted order it would be a pure
greedy heuristic. This minimizes moves, but may cause systematic imbalances by
always choosing the applications with the greatest resource consumption. Some
parameters are provided to tune the “greediness” and improve the uniformity of
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selection, again at the expense of number of moves (e.g., take every nth database).
During the subsequent place phase a database may be returned to its original
location.

3. Place phase, compute a destination server for each entry on the move
list—The move list generated by the prior phase is processed in steps, each step
the placing of N databases. N is configurable defaulting to the maximum of 6 or
5% of the current size of the place list. At each step, the “move” list is sorted in
descending order by the resource currently furthest from target, and placement
starts from the database at the top of the list. A target server is calculated by
scanning the set of servers for the resource sub bin with greatest capacity capable
of receiving the database. This is referred to as “worst fit” in contrast to “best fit”
and “first fit” heuristics commonly used in bin packing. Empirically, “worst fit” is
the best performer. After each of N placements, the system computes the standard
deviation from target for the servers in each resource dimension. If the system is
within tolerance of its final goal, the placement algorithm puts databases from the
move list back on their original server when possible. This affinity to the source
server continues until the balance goes out of tolerance and the algorithm switches
to its place mode. The algorithm terminates when the “move” list is exhausted.

A key element of both the remove and place phase is additional balancing
applied at the file system level of the target server. This is done to uniformly
distribute the load and disk space growth rate among the file systems on physical
volumes so that the lifetime of each volume is equalized. Databases are selectively
removed from or placed on the optimal volume to achieve these objectives.

Finally we note that the success of the bin-packing algorithm depends on
non-sparse population of the databases in the multidimensional space of resources
chosen for balancing. A sparse population may not have sufficient “shapes” to
uniformly occupy the bins. This is not a problem for mail databases central to this
study (see [5] for a map of the population in a two dimensional resource space).
Mail servers host hundreds to many thousands of databases and the distributions
follow a continuum as suggested by Figs. 4 and 5. Finding a good heuristic
algorithmic is more difficult for servers hosting a smaller number of heavily
accessed enterprise applications. The temporal access patterns of large enterprise
applications are sporadic and difficult to predict from historical data. In this case,
the algorithm suggests the creation and placement of new database replicas to
manage the load.

5. RESULTS

The methodology has been developed and deployed in a large production
environment. Encouraging results have been obtained in several areas. Among
these are the load balance and disk space management results and especially
their long-term stability. It is also unreasonable to expect that the methodology
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can accommodate every server and application. There are individual servers and
databases for which the historical usage patterns of each database do not project
into the future. We have observed database applications whose variability greatly
exceeds the range shown for their mean in Fig. 5. Therefore, a single database
can dominate the solution. However, the instrumentation and methodology of this
work are effective in quickly identifying such special circumstances. In practice,
outlying behavior is typically a consequence of abnormal activity (e.g. a database
indexing task that runs more frequently than required), and is easily remedied.

5.1. Short-term Balancing

Figures 7 and 8 show the workload distributions before and immediately after
balancing 22 production servers hosting the databases of Fig. 4. The vertical scale
is normalized, corresponding to 1.32 M transactions for Fig. 7, and 217 GB for
Fig. 8. The servers are balanced on the basis of transactions and disk space. The
distributions are shown as three classes of workload—heavy, medium, and light,
which correspond to the top 30%, middle 40% and bottom 30% of all workload.
For example, the most heavily loaded servers with respect to disk space contain
a disproportionate amount of large (heavy) databases. Transactions are balanced
to within 2%. Initially there was over a factor of three between servers in disk

Fig. 7. Transaction totals and distributions before (top) and after balancing (bottom).
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Fig. 8. Disk space totals and distributions before (top) and after balancing (bottom).

space, with distributions on three servers disproportionately heavy. Disk space is
balanced to within 12%. To achieve the final configuration, 7228 of the 24,440
databases were moved.

Explicit balancing on just two resources such as activity and space typically
results in lowered variance for other resources such as daily network traffic,
because activity against a database involves a multitude of resources. This effect
is demonstrated in Fig. 9, which shows the COV for several metrics before and
after corresponding to the balancing of Figs. 7 and 8. The COV is reduced for
metrics such as amount of data transferred to and from the server, documents read
and written, and number of databases. The number at the top of each pair of bars
is the mean over all servers for each metric.

5.2. Long-term Stability

Balanced server distributions lead to stable and predictable patterns of growth
and resource consumption. This is the basis of accurate capacity planning, a
key component of cost of ownership in large enterprises. Capacity planning is
a complex problem for a distributed system. Resource consumption and growth
are planned at multiple hardware levels such as server, network adapter, disk
storage, and bandwidth. Failure to upgrade resources leads to poor response at
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Fig. 9. COV for other metrics before and after balancing.

best, and more typically unplanned outages and costly human intervention. In
large data centers, capital resource upgrades are typically planned around business
cycles. Unpredictable patterns of resource demand disrupt scheduled upgrades and
maintenance.

Figures 10 and 11 show how balanced workload distributions persist over
time. Balanced workloads were constructed on 13 production mail servers. The
servers were RS/6000 4-way SMPs running AIX, and collectively hosted a total of
19,024 databases occupying 2.86 TB of data. Workloads were migrated in stages
to accommodate considerations such as relieving overloaded servers, deployment
schedules of production and backup servers, and availability of administrative
personnel and maintenance windows. Figure 10 shows the workload distributions
for Notes transactions one month after placement (left) and 9.5 months after
placement (right). Although the overall totals are somewhat uneven compared

Fig. 10. Transaction totals one month (left) and 9.5 months after placement (right).
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Fig. 11. Disk space totals one month (left) and 9.5 months after placement (right).

to the results in the previous section, the distributions are balanced and both
workload and distributions remain stable in the long term. (The data for server
247 one month after placement is an underestimate because data collection was
reinitialized during the trending period.) Figure 11 shows the distributions for disk
space, with similar stability.

To determine if the COV was stable over time, we examined a set of 6491
databases placed on four servers 1 year after placement. The servers resided on a
single IBM eServer zSeries 900 running Linux. Figure 12 shows the server loads
in transactions at the beginning and end of that year. The totals did not remain
as balanced as in the previous case. The distributions improved slightly (using a
distance measure computed as the sum of the differences from the optimal low and
high percentages). Figure 13 shows that the COV did not grow during that time,
and is roughly equivalent between servers. Each data point in the figure represents
the variation over 30 business days of activity for a server. The first point is placed

Fig. 12. Transaction loads of 6491 databases placed on four
servers.
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Fig. 13. COV for the four servers in Fig. 12 over 1 year of business days.

in the middle of the 30-day interval. The spike around day 40 is due to lower than
normal activity over holidays in December. We were unable to obtain data for
server 3 from December 21–January 1 inclusive, the observation for that server
reflects the activity with those dates omitted.

6. RELATED WORK

Because of the strong affinity between workload and databases in the Notes
environment, resource management as described in this paper is most similar to
the problem of assigning data to a group of computer systems in a network for the
purposes of query, update, and execution, which has been studied extensively in the
form of the File Assignment Problem (see for example the survey in [6]). Dowdy
and Foster observe that the file assignment problem is inherently intractable,
and proceed to classify and compare the existing work on the problem [7]. All
solutions attempt to assign files to computer systems in some “optimal” fashion,
where the approaches differ depending on the notion of “optimal.” Broadly, the
formulations of the problem either optimize for cost, such as storage, query,
update, or communication costs, or performance measures, such as response time
or throughput. Resource capacity constraints are limited to available storage on
a computer system, and in some cases, network channel capacity. Depending on
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the formulation, the solutions may or may not be optimal. In practice, heuristics
provide good solutions. Further, since the input data characterizing the workload
is typically a statistical measure, and the workloads change over time, an optimal
solution based on such measures may not be better in practice than a good sub-
optimal solution. We describe a few instances of file assignment and data placement
problems that are most closely related to the problem described in this paper.

Wolf’s formulation of the file assignment problem, which optimizes I/O
response time, includes practical considerations such as placement constraints
[8]. He observes that the solution is useful in two modes: an “unlimited” mode,
which can be used to create an initial placement, and a “limited” mode, which
tunes a placement with a limited number of moves. Because of the overhead of
moving files, and changes in file workload measures, the predominant usage is
“limited” mode. Though the algorithm described in this paper has a different
objective, it also incorporates placement constraints (e.g., source and destination
servers, pinned databases), and can be used in ways analogous to “limited” and
“unlimited” mode.

Hill’s method for placing datasets on storage devices to balance device uti-
lization uses a Cartesian representation like that in Fig. 6a, with axes of access time
and storage volume [9]. The method takes into account the number of accesses
per unit time and the total storage capacity of each device, and the demand of each
dataset in terms of the number of accesses per unit time and the volume of data in
the dataset. Data is assigned to storage devices on a best-fit basis with the residual
capacity of the device.

Pope et al. describe a method for assigning workload to servers based on
the life expectancy of the resources associated with the servers and used by the
workloads [10]. Target life expectancies may be set for specific servers that satisfy
administrative constraints such as maintenance windows. The resources define a
multidimensional space called a capacity space. The life expectancy of a server in
each resource provides a normalized measure over all resources and positions it in
capacity space. Workloads are assigned and reassigned to servers based on their
effect on the position of source and destination servers in capacity space relative
to their targets. The algorithm described in this paper manages life expectancy in
a restricted way by balancing growth rates.

Previous work in load balancing recognizes that variability in the metrics of
interest should be taken into account [11, 12]. Lee et al. studied the assignment of
files to disks in a parallel I/O system to balance load and minimize service time
variance [13]. They observe that with a multi-class workload, minimizing service
time variance is as important as balancing load to minimize mean system response
time. Their algorithm assigns files with similar service times to the same disk, in
such a way that the average disk load is balanced. This approach minimizes the
service time variance for individual disks. One of the underlying assumptions of
their algorithm is that service times and access rates are fixed. In contrast, in our
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environment, database activity is not fixed, and the standard deviation of database
activity is proportional to the mean. For this reason, segregating workloads in
this way would not minimize variability of database activity, as discussed in
Section 3.2.

Bozman optimized I/O performance in the CMS timesharing system by plac-
ing mini-disks (collections of files) on disks to minimize seek distance [14].
Mini-disks were grouped by high or low coefficient of variation (COV) in daily
activity, then placed to balance mean daily I/O rate over the disks. One year later,
placements were stable with respect to seek distance for the low COV groups,
and the overall balance of daily I/O rate was stable for both low and high COV
groups. Intuitively, the behavior of low COV groups was predictable, whereas the
fluctuations of mini-disks in the high COV groups compensated for each other. An
important segment of the mini-disk population was mini-disks with high activity
and low COV, which as Fig. 5 shows has no analogue in our study.

In video and multimedia servers, high service time variance can cause jitter.
A variety of data placement strategies are used to provide sufficient throughput
and bound service times, such as disk striping and data duplexing [15]. Heavily
and lightly accessed data may be mixed to balance load across disks and maximize
use of both bandwidth and space [16]. Finally, Rommel classified workloads as
“ordinary” or “hogs,” and observed that the probability of load balancing success
is increased with a mixture of ordinary processes and hogs compared to virtually
equal processes [12]. Our algorithm’s strategy of constructing “clones” of the
overall workload distribution is consistent with these approaches.

The work reported in this paper is based on an assumption of balancing
across a domain of general purpose servers. Less symmetric balancing may be
justified when different servers have been tuned for different types of workload.
An example is in the placing of a known workload distribution on a collection
of servers. Crovella et al. [17] studied optimum partitioning of the long-tailed
workload distribution in which all jobs within a certain size range are sent to a
dedicated server, though without considering variance. In a Notes environment
this approach corresponds to the situation in which dedicated servers are used
for mail because mail databases exhibit similar workloads and require similar
administrative expertise. These considerations are among the inputs to the complex
problem of managing a distributed heterogeneous computer system.

7. CONCLUSIONS

We described some of the key implementations features of a complex and
largely automated resource manager. By managing variability, growth, and mul-
tiple resource dimensions we achieve cost reductions by reducing outages, man-
agement costs and improving the average utilization of capital equipment. The ap-
proach scales to large numbers of servers. It also automates and greatly improves
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the ability to do capacity planning. Using empirical data from production Lo-
tus Notes servers, we found that balancing workloads over multiple dimensions
reduced the COV for resources other than those explicitly balanced. An exami-
nation of two sets of production servers 9–12 months after constructing balanced
workloads and distributions showed that distributions and COVs were stable.
Qualitative observations from the operations staff indicate that the servers were
stable, they performed similarly, and that capacity planning was easier over the
study period.
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